Exercise 1

Solve the differential equation.

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}-r e^{r x}-6\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-r-6=0
$$

Solve for r.

$$
\begin{gathered}
(r-3)(r+2)=0 \\
r=\{-2,3\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and $e^{3 x}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-2 x}+C_{2} e^{3 x},
$$

where C_{1} and C_{2} are arbitrary constants.

